机器学习中的梯度下降算法和随机梯度下降算法
梯度下降
n个样本点$(x_i,y_i)$,待拟合的函数为$h(x,w)$,其中$w$为函数的参数,误差函数为$J(w)=\sum_i (y_i-h(x_i,w))^2/2$,我们的任务是找出参数$w$,使得误差函数最小。沿着误差函数的负梯度方向改变参数即可。
$$\begin{aligned}
w&:=w-\eta\nabla J\\
&:=w+\eta\sum_i(y_i-h(x_i,w))\nabla h(x_i,w)
\end{aligned}$$
其中$\eta$为学习速度。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
| from pylab import * def generate(w1,w2,_fun,p): x=array(linspace(-10,10,100)) r=array((random_sample(len(x))-0.5)*2) y=_fun(x,p)+r return x,y def fun(x,p): w1,w2=p return w1+w2*x def jcb(x,p): w1,w2=p out=zeros([len(x),len(p)]) out[:,0]=1 out[:,1]=x return out def gd(x,y,_fun,_jcb,eta): p=array([0,0]) pp=[] for step in range(200): p=p+eta*dot(y-_fun(x,p),jcb(x,p)) pp.append(p) return p,array(pp) w1=3 w2=1.5 x,y=generate(w1,w2,fun,[w1,w2]) p,pp=gd(x,y,fun,jcb,0.0003) print p subplot(121) plot(x,y,'.') plot(x,fun(x,p)) subplot(122) plot(pp[:,0],pp[:,1],'o') plot(w1,w2,'rx',ms=12) show()
|
随机梯度下降
在上面递归迭代时,所取的求和不去全部而是取一个随机的集合$A$
$$\begin{aligned}
w&:=w-\eta\nabla J\\
&:=w+\eta\sum_{i\in A}(y_i-h(x_i,w))\nabla h(x_i,w)
\end{aligned}$$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
| from pylab import * import random def generate(w1,w2,_fun,p): x=array(linspace(-10,10,100)) r=array((random_sample(len(x))-0.5)*0.2) y=_fun(x,p)+r return x,y def gd(x,y,_fun,_jcb,eta): p=array([1,1]) pp=[] mini_batch=20 for step in range(500): samp=random.sample(xrange(len(x)),mini_batch) p=p+eta*dot((y-_fun(x,p))[samp],(jcb(x,p))[samp]) pp.append(p) return p,array(pp) def fun(x,p): w1,w2=p return w1*x+w2*x**2 def jcb(x,p): w1,w2=p out=zeros([len(x),len(p)]) out[:,0]=x out[:,1]=x**2 return out w1=3 w2=1.5 x,y=generate(w1,w2,fun,[w1,w2]) p,pp=gd(x,y,fun,jcb,0.00003) print p subplot(121) plot(x,y,'.') plot(x,fun(x,p)) subplot(122) plot(pp[:,0],pp[:,1],'o') plot(w1,w2,'rx',ms=12) show()
|